If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2-313=0
We add all the numbers together, and all the variables
2X^2-313=0
a = 2; b = 0; c = -313;
Δ = b2-4ac
Δ = 02-4·2·(-313)
Δ = 2504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2504}=\sqrt{4*626}=\sqrt{4}*\sqrt{626}=2\sqrt{626}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{626}}{2*2}=\frac{0-2\sqrt{626}}{4} =-\frac{2\sqrt{626}}{4} =-\frac{\sqrt{626}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{626}}{2*2}=\frac{0+2\sqrt{626}}{4} =\frac{2\sqrt{626}}{4} =\frac{\sqrt{626}}{2} $
| 10^0.6=x | | 2(x-7)=-3x+3 | | y=0.63(0.34y-44.21)-23.3 | | 3(5x-9-8(-1x+1))=0 | | x-5.4=-12 | | 3(5x=9)-8(1-x)=4x-4(1-4x)+39 | | x=0.63(0.34x-44.21)-23.3 | | x-0.21x=4.55 | | 5k=6k+2-9=0 | | 156=x+6x | | 7h=43=64 | | 2y+18=30 | | (5x-5)(8x+4)=0 | | 9x+160=5x | | -120+39=11{p+14} | | X+6x=156 | | 4{x+10}=50+2x | | 9x-160=5x | | X+6y=156 | | x2+20x=45 | | 104x-3²=10x+9 | | y-23=-42 | | 2a+10=5 | | y+33=17 | | 27+4y=-66 | | 30+4y=-66 | | 9×3+4y=-66 | | 12+4y=-66 | | 6+4y=-66 | | 44=−4(−4x+1) | | 2x+9=3x+4=2x+3 | | -2x+1=8-5x+11 |